0%

The Multivariate Normal Distribution

Let $n$ be a positive integer, let $Z_1,…,Z_n$ be independent, standand normal random variables, and set $\textbf{Z}=[Z_1,…,Z_n]^T$. Then $\mathbf{Z}$ has mean vector $\mathbf{0}$ and variance-covariance matrix $\mathbf{I}$. The density function of $\mathbf{Z}$ is given by

Let $\mu \in \mathbb{R}^n$, let $\mathbf{B}$ be an invertible $n\times n$ matrix, and set $\mathbf{Y}=\mu+\mathbf{BZ}$. Then $\mathbf{Y}$ has mean vector $E\mathbf{Y}=E(\mu+\mathbf{BZ})=\mu+\mathbf{B}(E\mathbf{Z})=\mu$ and variance-covariance matrix

Hence, the density function of $\mathbf{Y}$ is given by

Now $\det(\mathbf{\Sigma})=\det(\mathbf{BB^T})=[\det(\mathbf{B})]^2>0$ and hence $|\det(\mathbf{B})|=\sqrt{\det(\mathbf{\Sigma})}$. And according to $\eqref{f_z}$,

Observe that $[\mathbf{B}^{-1}(\mathbf{y}-\mu)]^T[\mathbf{B}^{-1}(\mathbf{y}-\mu)]=(\mathbf{y}-\mu)^T\mathbf{\Sigma^{-1}}(\mathbf{y}-\mu)$, and hence the density function of $\mathbf{Y}$ is given by